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: Abstract 

The nylon obturator and RTV sealing cuff for the M865 training round were evaluated to 
identify potential sources of ballistic variability associated with the material properties and 
material processing. While the properties of these materials are strongly dependent on 
processing conditions, temperature, and moisture content, the M865 performance variability is 
reduced by a well-engineered fracture mechanism that focuses the stresses in the obturator during 
sabot discard. A ballistic test was developed to validate the study. For the ballistic test, 
obturators were manufactured in “brittle, ” “tough,” and “tough-wet” conditions. These three 
conditions produced significant differences in the mechanical properties (the maximum strength 
varied by a factor of 2, the elastic modulus varied by a factor of 25, and the elongation to failure 
varied by a factor of 10). However, the ballistic performance did not show any significant 
variability due to the obturator properties. 
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1. Introduction 

. 

. 

This project was initiated to evaluate the materials used in the nylon obturator band and 

rubber sealing cuff for the M865 training projectile, to assess the ballistic implications of the 

material properties, and to evaluate the performance during ballistic testing. A literature search and 

a series of analyses were completed to evaluate the potential effects of variability in the raw 

material properties, processing effects, and environmental effects on the ballistic performance. The 

range of properties was then used in dynamic analyses (Newill et al., to be published) to predict the 

potential effects on the in-bore behavior on the projectile. Based on this study, an experimental 

program was designed to test the limiting values ballistically. The results of the study (in section 4) 

, showed that the obturator material properties had little effect on ballistic performance. 

A schematic of an M865 projectile is shown in Figure 1, and a photograph of the original 

version is shown in Figure 2. 

. 
Figure 1. Schematic Diagram of an MS65 Projectile. 

. 

The obturator band is located in the obturator seat on the rear bulkhead of the sabot. It is 

attached to the projectile with a knurled interface and helps hold the three sabot petals together. 

Notches are cut into the forward edge of the obturator and are aligned with the seams between sabot 

petals to initiate fracture of the obturator during discard. The M865 obturator is different from 

obturators on 120~mm tactical kinetic energy projectiles (M829, M829A1, and M829A2) in that it is 

broken during the discard process instead of at muzzle exit. The obturators on the M829, M829A1, 
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and M829A2 are broken by the loss of the support from the tube as the bullet exits the muzzle due 

to the large internal pressure. The sealing cuff on the M865 is located aft of the obturator and is 

designed to adhere to the sabot during discard, tearing along the seams between the petals after the 

obturator breaks. The sealing cuff also provides some sealing of the projectile during launch. 

Figure 2. Photograph of an MS65 Projectile. 

Several problems involving the obturator and sealing cuff have occurred during production 

of the M865 projectile. The obturators have cracked during the final machining process, assembly, 

and handling of the projectile. Problems reported on the sealing cuff have involved occasional 

anomalies with discard. These problems have been attributed to poor inter-facial adhesion between 

the sabot and sealing cuff. 

2. Nylon Obturator Band 

2.1 Raw Material Properties. 

The nylon obturator band is made of injection-molded nylon 6,6. The specific nylon used 

for this program is DuPont Zytel 101. The raw materials are purchased to the specification for 

general-purpose nylon 6,6 in ASTM 4066-96a, “Standard Specification for Nylon Injection and 

Extrusion Materials (PA)” (ASTM 1996). The acceptance data from both of the contractors all met 

this specification and showed very low variability, indicating that raw material properties would 

have little influence on variability in the final molded obturator. 

. 

. 
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2.2 Processing. 

. 

The processing of the nylon obturators is much more significant in terms of variability in 

final properties. Two important aspects of processing are storage of the material prior to molding 

and material toughness. Material storage is important because it is critical that the nylon be 

protected from moisture prior to injection molding. Nylon is hydroscopic and will absorb moisture 

rapidly in ambient conditions. Any moisture in the nylon during the molding process will cause 

voids to be formed in the final part, making it brittle, or could damage the obturator’s ability to seal. 

Toughness in the material is also an important processing concern. It can be related to the 

amount of crystallinity and the structure of the crystals. In general, increasing the crystallinity 

makes the nylon more brittle. However, the structure of the crystals also is important. For equal 

amounts of crystallinity, small crystals produce a tougher microstructure than large crystals. The 

degree of toughness in the nylon can be controlled through the initial mold temperature and cooling 

cycle during the injection molding process. If the nylon part is cooled rapidly from the molding 

temperature, it will solidify into an amorphous structure before crystals form. If the material is 

cooled slowly, crystals will form in the nylon. The degree of crystallinity can then be adjusted by 

altering the cooling cycle. 

The degree of crystalhnity will affect the appearance and the mechanical properties of the 

nylon. An amorphous nylon can be translucent, or clear in color. In general, amorphous nylon will 

have a high degree of toughness, with a low elastic modulus and yield strength, and a high strain to 

failure. Increasing the crystallinity of nylon makes it more opaque (giving it a whiter color) and 

makes it more brittle. The brittleness increases the elastic modulus and yield strength and reduces 

the strain to failure of the material. Figure 3 shows how the stiffness of nylon varies vs. percent 

crystallinity for samples conditioned at three different moisture levels. The relationship between 

the yield strength of nylon 6,6 and percent crystallinity is shown in Figure 4. Both the elastic 

modulus and yield strength increases linearly with percent crystallinity. 

3 



3 Sample A Dry 
P Sample A, 50% RH 
0 Sample A, 100% RH 
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Stiffness vs. Crystallinity for Nylon-610 Films (Kohan 1973). 

8 
45 .50 

Percent Crystallinity 

Figure 4. Yield Point of Nylon-66 vs. Percent Crystallinity (Kohan 1973). 

2.3 Environmental Efsects. 

After nylon obturators are made, the moisture content and temperature can significantly 

influence their mechanical properties. As mentioned earlier, nylon is hydroscopic in nature and will 

absorb up to 8% moisture over time. Increasing the temperature of the specimens would greatly 

increase the rate of moisture absorption. In addition, increasing the RH levels would increase the 

amount of moisture that these specimens would gain since the saturation level of the material is 

4 



proportional to the exposed RH (Tsai 1988). The absorbed moisture will cause the nylon to swell 

through hygrothermal expansion. 

. 

Absorbed moisture will also change the mechanical properties of the nylon. Figure 5 shows 

stress-vs.-strain curves for nylon 6,6 in the dry-as-molded (DAM) condition and a specimen 

conditioned to 50% RH. Note that the dry specimen is much more brittle. It is stiffer and has a 

higher yield strength than the specimen preconditioned to 50% RH (DuPont 1997). 

. 

I 
Yield Point 

14,000 

-~12,000 

0 5 10 15 20 25 

Strain, % Elongation 

Figure 5. Tensile Stress-Strain Data for Nylon 6,6 at 23’ C at 50% RH and Dry-as-Molded 
(DAM) Material Conditions wont 1997). 

Both increasing the temperature and increasing the moisture content reduce the stiffness and 

the yield point of the material. Figure 6 shows stress-vs.-strain curves for samples of nylon 

conditioned at 50% RH and four different temperature levels (DuPont 1997). At cold temperatures, 

the material displays brittle behavior, at higher temperatures, the material has tougher behavior. 

Figure 7 shows the effects of both moisture content and temperature on the flexural modulus of 

nylon 6,6 (DuPont 1997). Notice that over the normal operating temperature of the M865 (-25’ F to 

120’ F), the modulus varies by a factor of 7, indicating that there can be substantial variation in 

obturator properties across the test temperature. 



Strain, ‘% Elongatian 

Figure 6. Tensile Stress-Strain Data for Nylon 6,6 at 50% RH at Four Different 
Temperatures (DuPont 1997). 
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Figure 7. Flexwal Modulus of Nylon 6,6 vs. Temperature at Various Moisture 
(DuPont 1997). 
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. 

Figure 8 and Figure 9 show the effects of moisture, temperature, and strain rate on the yield 

strength and elastic modulus of nylon 6,6. Moisture and temperature effects cause much greater 

changes in material properties than changes in the material strain rate. 

Strain Rate, lnlmin 

Strain Rete. mmlmin 

Figure 8. Yield Stress Data for Nylon 6,6 Dry-as-Molded And 50% RH vs. Strain Rate and 
Temperature (DuPont 1997). 

Figure 9. Effect of Temperature and Strain Rate on the Elastic Modulus of Nylon 6,6 at 
Two Moisture Levels (Kawahara, Brandon, and Korellis 1988). 
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2.4 Stress Concentration Due to Notch and Geometry. 

While environmental effects can cause significant variation in the mechanical properties of 

the nylon obturator, the notches between sabot petals reduce variability in the behavior of the 

obturator during discard. In a separate study (Newill et al., to be published), the in-bore and discard 

behavior of the M865 projectile was numerically modeled. Figure 10 shows a finite element model 

showing the sabot discarding from the projectile. For simplicity of analysis; the notches in the 

obturator were not modeled. However, the analysis showed that during discard, the sabot geometry 

focused the stress in the obturator band such that the stress was three times higher at the sabot splits 

than in the surrounding material as shown in Figure 11. The stress is focused in a very small area 

because the obturator cannot slip on the knurled surface (due to the mechanical coupling) of the 

aluminum sabot. During discard, the elongation that occurs in the obturator will occur between the 

sabot petals. The distance between the sabot petals is very small, which in turn implies that the 

stress in the band is over a very short gauge length. This mechanism focuses all the energy from the 

petals separating into this very small area in the band, causing a large stress concentration. 

Figure 10. Finite Element Model of Sabot Discard. 

The notch in the obturator further focuses the stress. The stress concentration due to the 

notch is defined by equation 1 (Hertzberg 1989): 

where k, is the stress concentration factor, a is the notch length, and p is the radius of the notch tip. 

For the notch lengths in the M865 (between 4 mm and 6 mm) with a notch radius of 0.25 mm, the 

stress concentration factor varies between 8 and 10. 
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The stress at the notch tip, due to a combination of the stresses from the sabot petals coming 

apart and the stress concentration at the notch, is then 24 to 30 times higher than the stress in the 

surrounding material. Since the stress at the notch tip is much higher than the failure strength of the 

nylon, variations in nylon material properties do not significantly affect failure of the band during 

discard. 
. 

=D Partially Glued 

A Bolted (Eq) - No Glue 

31cI Bolted (Inc) - Perfect Glue 

Ic Bolted (lnc) - Partial Glue 

180 200 

Figure 11. Circumferential 
Obturator. 

220 240 260 

Circumferential Location (degrees) 
280 300 

Stress in the Obturator During Discard for an Unnotched 

3. Sealing Cuff 

The investigation into the sealing cuff was more limited than the obturator portion. This 

was due to the development of the M865E3 version of the projectile, which is replacing the current 

sealing cuff with a nylon 6 snap ring adapter. In addition, material variations in the rubber have not 

been identified as a significant area of concern. A static break test was conducted on one projectile 

at Aberdeen Proving Ground (APG). In the test, the obturator dominated the lift-off process. Once 

the obturator fractured, the sealing cuff provided little resistance to the tearing lift-off loads. In this 

case, the RTV sealing cuff was well adhered to the sabot. 

In the numerical discard analysis (Newill et al., to be published), the sealing cuff was 

modeled with several different interfacial conditions: perfectly bonded, partially bonded, no bond, 

perfectly bonded with a bolted sealing cuff, partially bonded with a bolted sealing cuff, and no bond 
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with a bolted sealing cuff. The stress distributions at the leading edge of the sealing cuffs during 

discard for these cases are shown in Figure 12 and Figure 13. When the sealing cuff is perfectly 

bonded to the sabot, the stress is focused at the seam between the petals. This provides a short 

gauge section for failure between the petals. When the sealing cuff is only partially bonded or not 

bonded, the circumferential stress is no longer focused between petals and a much larger section of 

the sealing cuff can deform prior to failure. Since the sealing cuff is an elastomer, it can endure 

substantial deformation and absorb significant energy before it breaks, increasing the chance for 

irregular failure. Therefore, a poor bond between the sabot and the sealing cuff can lead to less 

repeatable discard behavior, inducing variability that may contribute to poor Target Impact 

Dispersion (TID). When the sealing cuff is bolted to the sabot, the failure of the sealing cuffkabot 

bond is less dramatic. The bolts act as secondary stress concentration sites, initiating failure if the 

adhesive fails. The bolts therefore help reduce the potential variability due to poor bonding. 

400 

300 

is 
2 200 

z 

100 

0 

Ic Perfectly Glued 

43. Partially Glued 

A Bolted (Eq) - No Glue 

=X-Bolted (Inc) - No Glue 

180 200 220 240 260 280 300 

Circumferential Location (degrees) 

Figure 12. Stress Distribution at the Forward Edge of the Sealing Cuff During Sabot 
Discard. 

. 

. 
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‘% 

\\ ., -Partially Glued 

i ,: ZX-” Bolted (Inc) - Partial Glue ' 
‘\ 

ii 
'... ,' _A A A 

a 240 
I 

220 240 260 

Circumferential Location (degrees) 

Figure 13. Stress Distribution at the Bolts in the Sealing Cuff During Sabot Discard. 

4. Ballistic Testing 

It was decided to pursue an experimental program to evaluate the effects of obturator 

properties on projectile performance. The two most important parameters that could affect 

obturator performance were identified as the toughness of the molded nylon band and the moisture 

content of the obturator. Three material conditions were then chosen for testing: a “brittle” 

condition with a low moisture content, a “tough” condition with a low moisture content, and a 

“tough” condition with a high moisture content (which further increases the toughness). The tough 

and brittle conditions were chosen based on reasonable molding conditions for the obturator and are 

described in section 4.1. The dry and wet environmental conditions were based on typical amounts 

of moisture in the obturator as described in section 4.2. 

Based on an analysis prior to the test, it was determined that nine projectiles would need to 

be shot with each configuration to produce statistically meaningful results (Soencksen, Newill, and 

Webb, to be published). The ballistic test was also designed to evaluate the effects of bourrelet 

diameter on performance, which increased the number of configurations of test projectiles to 
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include two bourrelet diameters. Therefore, 60 projectiles (9 test projectiles for each configuration 

and 6 spare projectiles) were manufactured for the test. The test matrix is given in Table 1. 

Table 1. Test Matrix &umber of Projectiles for Each Configuration) 

4.1 Material Mechanical Properties. 

Test obturators were manufactured in the two conditions “brittle” and “tough.” These 

conditions were achieved by controlling the processing parameters during the injection molding 

process. The details of the manufacture are contractor proprietary and therefore are not presented 

here. Several test specimens were manufactured with the same conditions, and their average 

mechanical properties are listed in Table 2. The tough specimens had approximately 4 times the 

elongation to failure as the brittle specimens. 

Table 2. Mechanical Properties of the Molded Test Projectiles 

4.2 Environmental Conditions. 

For the two environmental conditions (“dry” and “wet”), it was important to determine 

reasonable moisture levels for the projectiles (i.e., moisture contents that could be achieved in 

fielded ammunition). This would avoid biasing the test with “worst-case” environmental conditions 

such as an obturator completely saturated with moisture. Therefore, a study, described in section 

4.2.1, was initiated to determine achievable moisture levels for nylon obturators. A second study, 

described in section 4.2.2, was then started to determine the best way to achieve these moisture 

levels. 

. 

. 
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. 

4.2.1 Dry Out Testing. 

The purpose of this test is to determine the moisture content of M865 projectiles that have 

been stored for long periods of time. Eight obturators were selected for testing. Four were 

manufactured in 1988 (lot number IOP88JO58-003), and four were manufactured in 1997 (lot 

number MHM97K-002S295). One of the 1997 obturators broke in half when it was removed from 

the projectile, and each piece was used as a separate test specimen, so there were a total of nine test 

specimens. The 1988 projectiles had been stored in the open (not stored in ammunition cases) in 

bunkers at APG for approximately 10 years. The 1997 projectiles had been subjected to rough 

handling tests in December 1997, then sat for about 5 months in a propellant loading plant that had 

controlled temperature and humidity levels. The rough handling testing may have partially dried 

the obturators on these projectiles since it incorporates temperature cycling in a dry environment. 

The projectiles were dried in an oven at 165” F for 32 days. The percent moisture loss vs. 

time is shown in Figure 14. The specimens from 1988 showed an average of 3.52% moisture loss 

by weight; the specimens from 1997 showed an average of 1.56% moisture loss by weight. Based 

on this study, it was determined that a reasonable moisture level for the “wet” obturators was 3.5% 

by weight moisture. 

4.5 

4.0 

f 2.5 

E 2.0 

ii 1.5 

1111 -+I988 A 
I 

-1988 B 

1988 C 

-1988 D 

-1997A 

-1997 B 

-1997 c 

-1997 D 
I b-1997 E 

400 600 800 1000 

Hours 

Figure 14. Obturator Moisture Loss vs. Time. 
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4.2.2 Moisture Absorption by the Obturators. 

Moisture absorption tests were then initiated to determine the moisture saturation level and 

diffusion constants on the obturators. The obturators from the dry-out study were placed in two 

humidity chambers (50% RH and 90% RH) at 145” F. The percent weight gain vs. time is shown in 

Figure 15. The specimens conditioned at 90% RH had an average moisture saturation level of 

5.67%. The specimens conditioned at 50% RH had an average saturation level of 1.93%. 

From this study, it was interpolated that obturators with 3.5% moisture content would be in 

equilibrium in 75% RH air. It also showed that at 145” F, the obturators reached equilibrium 

moisture content within 20 days. 
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Figure 15. Percent Weight Gain vs. Time for Obturators Conditioned at 50% RH 
(Specimens 1988 C, 1988 D, 1997 C, 1997 D, and 1997 E) and 90% RH 
(Specimens 1988 A, 1988 B, 1997 A, and 1997 B). 

4.2.3 Test Sample Preparation. 

The test projectiles were manufactured in July of 1998. Three projectiles with removable 

obturators were made with the test projectiles in order to evaluate moisture content through the 

conditioning cycle. All of the projectiles were placed in ammunition storage cans and shipped to a 
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separate location for environmental conditioning. At that time, all of the “dry” projectiles were 

sealed in Mylar vacuum bags. The “wet” projectiles were placed into a conditioning chamber at 

145” F at 95% RH until the test obturators showed a weight gain of 3.5%. After environmental 

conditioning, mechanical tests were performed on companion samples of all of the materials. The 

results are listed in Table 3. It should be noted that that the maximum strength varies by a factor of 

2, the elastic modulus varies by a factor of 25, and the elongation to failure varies by a factor 10 for 

the obturators. 

Table 3. Average Obturator Mechanical Properties After Environmental Conditioning 

Condition 
Number of Test Maximum Elongation to 

Specimens Tensile Strength Elastic Modulus Failure 

Brittle 
Tough 

Tough-Wet 

23 
12 
15 

(psi> 
11057.9 
9569.9 
5907.7 

(ksi) 
576.0 

380.87 
23.4 

(%) 
7.75 
39.65 
71.62 

The “wet” projectiles were then placed in Mylar vacuum bags, and all of the projectiles were 

shipped to an ammunition loading plant. At the load plant, the vacuum bags were removed and the 

projectiles were loaded, placed in ammunition storage cans, and shipped to the ARL Transonic 

Experimental Facility at APG, MD, for testing. 

. 

. 

At the Transonic Experimental Facility, the projectiles were temperature-conditioned in 

environmental chambers prior to the test. The “dry” projectiles were stored at 120“ F and 25% FUI 

for a minimum of 24 hours prior to testing. The “wet projectiles” were conditioned at 120” F and 

75% RH for a minimum of 72 hours and a maximum of 120 hours prior to testing. The dummy 

obturators were weighed prior to the ballistic test, and they had an average moisture content of 

3.35%. The reason for conditioning the “wet” projectile with humidity for longer periods of times 

was twofold. First, since the testing was fired with a propellant temperature of 120” F, the moisture 

content of the obturators would have dropped due to drying. The conditions were chosen to bring 

the obturators back to the 3.5% moisture content. While the timeframe was too short to fully 

recondition the obturators, the critical area of the band is the base of the slot since this is where the 

failure will initiate. The condition just before firing will ensure that this region is at the appropriate 

moisture content. 
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4.3 Results. 

The full results of the ballistic test will be described in a separate report (Soencksen, Newill, 

and Webb, to be published). However, this section reviews the results significant to the obturator 

performance. The projectiles were fired from an Ml Al tank, through the Transonic Experimental 

Facility. Spark shadowgraphs were used to establish the yawing motion parameters, which were 

extrapolated to determine first max yaw. Target impact was also recorded for each shot. The test 

was conducted on the E3 version of the M865 projectile as shown in Figure 16. The E3 version of 

the M865 differs from the original version in that it incorporates a nylon 6 snap ring adapter rather 

than the rubber sealing cuff used on the original version of the M865 as shown in Figure 17. The 

variability in the first max yaw results from the ballistic testing as measured through standard 

deviations was 0.44 for the dry brittle bands, 0.60 for the dry tough bands, and 0.47 for the “wet” 

tough bands (Soencksen, Newill, and Webb, to be published). 
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Figure 16. E3 Version of the MS65 Projectile. 

During the test, anomalies were noted in the fracture of the obturator. Several large pieces 

of obturators were recovered on the pad in front of the tank. The length of many of the pieces found 

was greater than that of the 120” sabot segment arc, which would have been expected for normal 

band breakage. Several of these pieces are shown in Figure 18 and Figure 19. The bands also 

showed signs of gas leakage underneath the obturators (Figure 20), and the aft potion of the bands 

were missing or badly damaged. The remaining sections of the aft portion of the band had a 

triangular cross section, which implies that they were worn irregularity due to gas leakage 

underneath pressing the band against the tube. Since gas leaked underneath the aft portion of the 

band in-bore, the loss of tube support at muzzle exit caused the aft portion of the band to blow off of 

the projectile. The leakage underneath the obturator and loss of the aft portion of the band 
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disengages the knurled surface on the band seat. When the knurled surfaces are not engaged, the 

stresses in the band are not focused between the sabot petals during discard, leading to more erratic 

fracture. This is further supported with the recovery of the large section of obturator from the 

testing. The bands show that they did not fail at each of the slots as designed. Since the bands are 

not fracturing as designed, the effects of the obturator mechanical properties should be more 

evident. This is due to the reduction in stress concentration (predicted in section 2) due to the loss 

of the mechanical coupling from the knurling surface. It also allows the obturator to absorb energy 

over a larger area, leading to failure that is more erratic. However, the results show that there were 

no significant differences in obturator behavior, indicating that even with the reduced stress 

concentration, the differences in mechanical property still did not significantly affect discard. This 

also implies that if the band is performing properly (with the knurling surface intact), the material 

differences should have even less effect. 

Figure 17. Comparison of the Original MS65 Projectile (Left) to the E3 Version (Right). 
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Figure 18. Obturator Pieces Found During the Ballistic Test. 

‘19. Close-up Photograph of Obturator Pieces Found During the Ballistic Test. 
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Figure 20. 

5. 

Sabot From a Separate Ballistic Test Showing Soot in the Obturator Seat Due to 
Gas Leakage Underneath Obturator. 

Conclusions 

Historical test data have shown that nylon functions well as an obturator material. It is used 

in many different types of ammunition and rarely causes problems. However, nylon can have a 

variety of properties, and these need to be understood. The toughness of the obturator can change 

significantly due to processing conditions, moisture absorption, and temperature. In the M865 

obturator, variability due to processing is offset by the knurled geometry and notch, which focus the 

stress at the sabot seams. The ballistic tests in this study confirm that variability in the mechanical 

properties of nylon has little influence on sabot discard. 

The obturator has several functions, which are contradictory with regard to the material 

requirements. During the manufacturing, handling, and storage of the projectiles, the obturator 

needs to be tough to avoid brittle cracking although nylon is most brittle in its dry-as-molded 

condition. As the obturator is exposed to ambient humidity levels, it will absorb moisture and 

increase its toughness. During discard, the obturator needs to fail in a consistent manner for each 

shot. 

As described in section 2, the mechanical properties of nylon can vary by several orders of 

magnitude due to the processing conditions, moisture content, and temperature. This means that the 

obturator fracture can vary significantly due to the material properties. Therefore, an engineered 
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breaking mechanism was designed into the obturator and obturator seat to overcome the material 

property variability. The knurled surface in the obturator seat on the sabot and the notch in the 

forward edge of the obturator both help to focus the stress and achieve repeatable failure. These 

failure mechanisms minimize the variability due the nylon mechanical properties during discard 

and, therefore, minimize the potential shot-to-shot variability. 

The obturators used on the projectile in ballistic testing were made with a variety of material 

conditions. The results in Table 3 show that the maximum strength varied by a factor of 2, the 

elastic modulus varied by a factor of 25, and the elongation to failure varied by a factor 10 for the 

obturators in this study. It should be noted that these ranges of material properties do not represent 

extremes mechanical properties for nylon; rather, they are all conditions that could be reasonably 

seen in tank ammunition. However, the.ballistic test showed no significant difference in first max 

yaw of the projectile’s behavior, indicating that the variability in nylon behavior can be overcome 

with an engineered failure mechanism and therefore had little influence on projectile discard even 

with leakage problems underneath the obturator. 

An issue that needs to be monitored is the manufacturing conditions of the obturators since 

these impact the material properties. Currently, there are no quality control tests or acceptance 

criteria for the molded projectiles, allowing the crystallinity and void content to vary significantly. 

While the ballistic testing showed that the variability can be overcome with mechanical fracture 

mechanism, controlling the source of the variability will ensure more consistent obturator 

performance. 

The most significant issue with the sealing cuff appears to be adhesion to the sabot. Good 

adhesion focuses the circumferential stress in the sealing cuff at the seams and leads to consistent 

fracture. If the adhesion is poor or the adhesive interface fails, the bolts act as secondary fracture 

initiation sites. While this acts as an engineered failure mechanism, it is not as well done as the 

knurling/slot failure mechanism in the obturator. It appears that this portion is working well enough 

due to the good TID performance of the projectiles. 

. 

. 
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